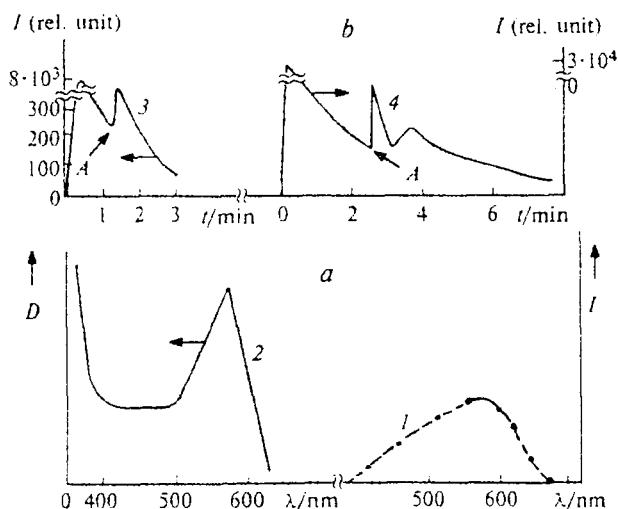


Chemiluminescence of organometallic compounds in reactions with the free radical galvinoxyl


R. G. Bulgakov

Institute of Petrochemistry and Catalysis, Bashkortostan Republic Academy of Sciences,
141 prosp. Oktyabrya, 450075 Ufa, Russian Federation.
Fax: 007 (347 2) 31 2750

Chemiluminescence (CL) is observed in reactions of the free radical galvinoxyl (RO^{\cdot}) with PhMgBr , PhMnCl , $\text{PhTi}(\text{Bu}^{\cdot}\text{O})_3$, and sodium naphthalenide or sodium anthracenide during their oxidation with air and in reactions of RO^{\cdot} with the initial organometallic compounds.

Key words: chemiluminescence, photoluminescence, free radicals.

Usually, the intensity of chemiluminescence (CL) during oxidation of organometallic compounds (OMC) decreases sharply upon introduction of galvinoxyl (1), an effective inhibitor, in a reaction solution and then is partially restored after the complete consumption of 1 in reactions with intermediate radicals. This was demonstrated by us in oxidation of alkylaluminums and alkylborons with $\text{O}_2^{1,2}$ or XeF_2^{3} . However, the addition of compound 1 can also cause a reverse effect, a jump increase in CL intensity.

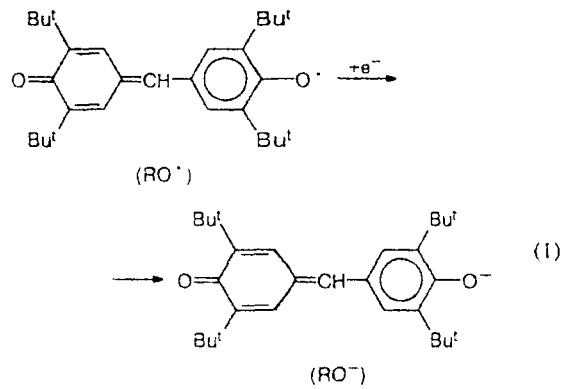


Fig. 1. Spectral (a) and kinetic (b) characteristics of CL in reactions of OMC with the free radical galvinoxyl in THF: 1, a CL spectrum appeared after galvinoxyl ($2.6 \cdot 10^{-3} \text{ mol L}^{-1}$) was added to the reaction solution of sodium anthracenide ($6 \cdot 10^{-3} \text{ mol L}^{-1}$), through which air is bubbled; 2, the absorption spectrum of this solution; 3, PhMnCl ($4 \cdot 10^{-2} \text{ mol L}^{-1}$), through which air is bubbled; 4, PhMgBr ($5 \cdot 10^{-2} \text{ mol L}^{-1}$), through which air is bubbled. The moment when galvinoxyl ($2 \cdot 10^{-4} \text{ mol L}^{-1}$) was introduced is marked with arrow A.

The syntheses of 1 and OMC were described in Refs. 1 and 4, and the methods for measurements of CL and fluorescence (FL) were described in Refs. 2 and 4.

Enhancement of CL during autoxidation of a series of OMC such as PhMgBr , PhMnCl , $\text{PhTi}(\text{Bu}^{\cdot}\text{O})_3$, and $\text{Na}^+\text{X}^{\cdot-}$ (where $\text{X}^{\cdot-}$ is naphthalenide or anthracenide anion-radical) (Fig. 1) appears as a flash of light over the light background observed before the introduction of 1, i.e., not only an increase in CL brightness but also a change in CL kinetics takes place. If the increase in CL intensity were due to energy transfer to compound 1 with its subsequent emission, the shape of the kinetic CL curves would remain unchanged. This attests to the chemical nature of the increase in glow brightness. After compound 1 was introduced in a reaction solution of OMC, the solution turns crimson, and an intense band with $\lambda_{\text{max}} = 580 \text{ nm}$ (Fig. 1) appears in the absorption spectrum, which is characteristic of a phenoxide anion ($\text{RO}^{\cdot-}$), a product of the reduction of 1.⁴

A CL flash is observed not only upon introduction of 1 in reaction solutions of OMC, but also when the initial OMC are mixed with 1 in an atmosphere of argon; that is why both OMC themselves and unstable oxidation products can serve as reducing agents in reaction (1).

The brightest CL is registered for Na^+X^- , which are stronger electron donors.

The CL spectrum measured using an MZD-2M monochromator and corrected for self-absorption of the reaction solution has a maximum at 590 nm (Fig. 1) and correlates well with the FL spectrum of the phenoxide anion,³ which was obtained during the low-temperature (77 K) photoirradiation of a solution of 1 in an ether—isoctane mixture. From this it follows that the excited phenoxide anion (RO^-)^{*} resulting from the electron transfer reaction

is a CL emitter.

References

1. R. G. Bulgakov, S. K. Minsker, G. A. Tolstikov, U. M. Dzhemilev, and V. P. Kazakov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1984, 1747 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1984, 33 (Engl. Transl.)].
2. R. G. Bulgakov, B. A. Tishin, V. P. Vlad, G. Ya. Maistrenko, S. S. Ostakhov, G. A. Tolstikov, and V. P. Kazakov, *Khim. Vys. Energ. [High Energy Chem.]*, 1989, 23, 250.
3. R. G. Bulgakov, V. N. Yakovlev, R. A. Sadykov, G. Ya. Maistrenko, V. P. Kazakov, and G. A. Tolstikov, *Metalloorg. Khim.*, 1989, 2, 339 [*Organomet. Chem. USSR*, 1989, 2 (Engl. Transl.)].
4. R. G. Bulgakov, D. Sc. (Chem.) Thesis., Institute of Organic Chemistry, Bashkir Science Center, Ural Branch of AS USSR, Ufa, 1990, 446.
5. L. N. Ganyuk, N. F. Guba, and V. D. Pokhodenko, *Khim. Vys. Energ. [High Energy Chem.]*, 1980, 14, 439.

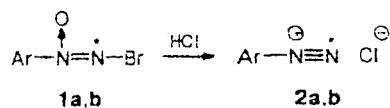
Received April 23, 1996,
in revised form November 19, 1996

Reactions of 1-aryl-2-bromodiazene 1-oxides with acids and bases

A. Yu. Tyurin, A. M. Churakov,* S. L. Ioffe, Yu. A. Strelenko, and V. A. Tartakovskiy

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
47 Leninsky prospekt, 117913 Moscow, Russian Federation.
Fax: 007 (095) 135 5328. E-mail: churakov@caer.ioc.ac.ru

The reactions of 1-aryl-2-bromodiazene 1-oxides with HCl in nonaqueous media give aryl diazonium chlorides, while 1,3,3-substituted triazenes-1 are formed in the reactions with secondary amines. Using 2-{¹⁵N} label, it was shown that the aryl group does not migrate in these reactions.


Key words: 1-aryl-2-bromodiazene 1-oxides, diazonium salts, triazenes, ¹⁵N NMR spectroscopy.

Recently,¹ we obtained 1-aryl-2-bromodiazene 1-oxides (BDO) by the reactions of aryl nitroso compounds with NH_4Br in the presence of *N*-bromosuccinimide. Their reactions with olefins were studied. In this work, the reactions of BDO with some acids and bases are studied.

1-Aryl-2-bromodiazene 1-oxides **1** react with HCl in Et_2O to form aryl diazonium chlorides **2** (Scheme 1). Their structure was confirmed by azo coupling with β -naphthol yielding the corresponding compounds. Due to high yields of products **2**, the reaction of BDO with HCl can be used for preparing diazonium salts in nonaqueous media, including preparation from weakly basic amines.

Based on the result of this reaction with 2-{¹⁵N}-**1a** (synthesized by the reaction of nitrobenzene with

Scheme 1

a: Ar = Ph (**2a**, including the sample labeled by ¹⁵N, yield 95%),

b: Ar = 2,4,6-Br₃C₆H₂ (**2b**, 92%)

¹⁵NH₄Br), we can exclude the mechanisms associated with the migration of the aryl substituent. Phenyl-diazonium chloride ¹⁵N-**2a** obtained via Scheme 1 was